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=PL Diffraction pattern formation

« Parallel rays focused to a point at back
focal plane

2 NN Specimen * Equivalent to Fraunhofer far-field
scattering

< - -A- (- 1-F)-7-,---- P Objective lens
| \ { B Back focal plane
I e Image plane
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P~L Bragg law

« Constructive interference for: nA=2d,,sin6

» Crystalline sample tilted such that one plane at Bragg
angle 6, relative to k, = 2-beam diffraction pattern:
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=PrL Laue condition

* TEM scattering geometry is that of Laue diffraction (not Bragg)

 Laue condition: g=k'-k, =2 (1.37)

g=ha +kb +1¢ (1.38)
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=PirL Ewald sphere/reciprocal lattice construction

 Ewald sphere/reciprocal lattice construction provides method to identify which
plane(s) diffract under chosen incident beam/crystal geometry
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=PirL Ewald sphere/reciprocal lattice construction

 |lllustration using realistic parameters: 200 keV beam, BCC Fe crystal

Y
000
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=PiL Diffraction away from exact Bragg condition

 Tilt crystal away from exact Bragg condition — plane still diffracts:
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=P~L Deviation parameter

* Introduce deviation parameter vector to describe deviation from Bragg:

kK'=k,+3+5 (1.39)
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=PiL Scattering from a lattice (kinematical)

* From last week, scattering amplitude for one atom:

v, (F)= eXp{Zﬂ'ikF}f(q) (1.04)
1) =23 o(F)exp{-2mig- Flar (1.25)

e Consider assembly of atoms into a unit cell:
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=PiL Scattering from a unit cell

e Total scattered wave from unit cell is:

exp{27mikr}

r

v, (F)= . fyexp(-2mig )

_ exp{2mikr} F(4)

r

« Defines the structure amplitude F(q) for the unit cell
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=PiL Scattering from a lattice (kinematical)

» Unit cell therefore scatters spherical wave (if viewed at large r) modulated as
function of scattering angle according to value of F(g)

« Now consider N, x N, x N_assembly of identical unit cells

e Reprising from egs 1.37 and 1.39: g=8+s§
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cPiL Scattering from a lattice (kinematical)

« Separate g and position of nthunit cell F, into their components:

« By definition g-F, is necessarily an integer. Therefore:

v (F)= exp{27t1kr} ZZZF exp[—Zﬂi(nanx +nbs +n.cs, )]

n, l’l n,

| Duncan Alexander EPFL-IPHYS-LSME. Electron-matter interactions: Elastic scattering (ll)

(2.3)
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(2.5)
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=PiL Scattering from a lattice (kinematical)

The three summations in eq. 2.5 are geometric progressions of type:

sin(ﬂAocsa )

; exp (—27tiA0{sa ) = (ﬂasa )

Letting the size of the sample be: D, XD, xt=N.aXNbXN c

we obtain:
_ 2mik _\| sin(zN_as_) || sin|ZN bs, ) || sin(7N cs,
v (F)= exp1 27ikr} F(q) ( ) ( y y) ( )
r sin(7as, ) sin ( ehs, ) sin ( TTcs, )
« sissmall, therefore:  sin(mas,)=mas,  etc.
« Take volume of unit cell as: V. =abc
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(2.6)
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=PiL Scattering from a lattice (kinematical)

« For TEM specimen, N, and N, >> N,

’ eq. 2.7 becomes:

« When calculate scattering intensity I, =|w
lexp{27ikr}| F(g) ] in(zN cs,) |
_\ | |eXp2mikr q sim(7TN_cs,
Is(r)—{ N }xDxé(sx)Dﬁ(Sy)X{ p } (2.8)

» To find total scattered intensity need to integrate over sphere at distance r from sample

* Element of surface area of sphere is: dS =r’dQ

_ ds.ds,
~ k%cosO

* In reciprocal space: dQ
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=PiL Scattering from a lattice (kinematical)

— 2 . 2
* Fromeqg. 2.8: Is(f):Dny{};(Vq)kXP{Z”ik”}@ {SIH(ZNZCSZ)} 5(Sx)5(sy)
c \)

Z

« The intensity scattered in direction near g with deviation parameter s_ is:

D D
IgzjldS: X y{ o sm 7US }Jg dsxj5(sy)dsy (2.9)

cos@ TS,

« DD, cos@ is area of crystal projected along k’
Therefore intensity per unit area of diffracted beam is:

/ :{ F, sin(7rtsz)}2 (2.10)

* | mkV_cosO, s

Z

where F, is |F(g)| for the reflection g
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=Pr~L Fourier transform equivalence

 Consider again eq. 2.5: v, (F)= eXp{iﬂikr} EEEF(Q)CXP[—zm(”anx +nbs, +”ZCSZ)]

n, n, n

e Summation term originating from q-r, =5 - r, is slowly varying between the cells.

* Therefore can argue to replace summation by integral:

v p(a
y, (F)= eXP{iﬂlkr} | _‘(/‘1 ) exp(=27is - F')dF’ (2.13)
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=PiL Scattering from a lattice (kinematical)

2

F in( 7t
Going back to eq. 2.10: Ig:{ — g - sin( Sz):|
wkV_cosf, s

» Define “extinction distance™ &, = ”kVC;OSHB (2.11)
8
in(zss,) |
i\ mw
+ Then: lg{s SZ} (2.12)
G,S.

Call z component of deviation parameter vector § the excitation error where: s=s,

Intensity of diffracted beam I, modulates with ¢ and s
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=PiL I; vs excitation error s

e Plot I,vss
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=Pr~L Interaction with Ewald sphere

e Exact Bragg condition * Near Bragg condition

'
\
\l
\
\

® ®
000 hkl
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=Pi~L Methods for measuring /Iy vs s

« How could we measure I, vs s experimentally?
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=P~L Convergent beam electron diffraction

e 2-beam illustration with semi-focused beam (from J.-P. Morniroli)

Elementary incident beams

Specimen
20 = Diffracted area
™
\7
/\ Objective lens
' —/ 7~~~ hkl disk
U B.f.p. o
< —» . _ \
29B Transmitted disk Image
plane
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=P~L Convergent beam electron diffraction

e 2-beam illustration with fully-focused beam (from J.-P. Morniroli)

Specimen
200
«—p
29B Transmitted disk
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=P~L Convergent beam electron diffraction

« 2-beam illustration with fully-focused beam (from J.-P. Morniroli)

(hkl) trace

Incident rays
in exact
Bragg orientation

. hkl
hkl hkl deficiency line
deficiency linei excess line
< : >
20,
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=P~L Convergent beam electron diffraction

Optical axis

« Diffracted beam CBED disc
contains different ray paths
that have sampled different
excitation errors s

* [llustrate with Ewald sphere
construction (diagram from
J.-P. Morniroli)

Ewald sphere /

in exact
Bragg orientation Relrod
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=P~L Convergent beam electron diffraction

* Experimental 2-beam CBED pattern:
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=PiL Deficiencies of kinematical model

« As sample thickness ¢ increases for s =0, I, >1

e Cannot explain experimental data e.g.:

2-beam CBED pattern Dark-field image of wedge-shaped sample
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=PiL Dynamical scattering

* Kinematical model very successful for predicting
geometry of diffraction data.

 However does not predict intensities well. Because
electrons are strongly scattered by atoms!

* On propagation of electron beam through crystal
lattice this leads to multiple elastic scattering: called
dynamical scattering

e The first Born approximation does not apply, except
for very thin and weakly scattering objects!

* Introduce Bloch wave theory as generally-applicable
approach for treating dynamical scattering
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=Pr~L Dynamical theory: Bloch wave approach

* Aim: solve Schrddinger equation for wave function of fast electrons within crystal lattice

« Take eq. 1.16, but now define ¢(F) as crystal potential:

877 me
h2

Vi (F)+ | E,+¢(F) w(F)=0 (2.14)

* Expand periodic potential of lattice as a Fourier series based on the reciprocal lattice:

o(F)= ivg exp(27ig - F) (2.15)
F,
V,=-r (2.16)

c
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=Pr~L Dynamical theory: Bloch wave approach

Full solution of eq. 2.14 written as linear superposition of Bloch waves w (F):

‘P(f):Z(x(j)l//(j)(F) (2.17)

Each Bloch wave is an eigen solution of eq. 2.14

Amplitudes o) are determined by boundary conditions

Being inside a periodic crystal lattice, each Bloch wave can be represented by:
w(F)=u, (F)exp(ZniE-f) (2.18)

where u, (F) has periodicity of the lattice
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=Pr~L Dynamical theory: Bloch wave approach

« Wave function can then be expanded as a Fourier series based on the reciprocal lattice
to give:

w(F)= C exp| 2mi(k+g) F]| (2.19)

8

« C,are the Bloch wave coefficients

« Collect coefficients together by defining “modified potential” U(F)

with Fourier coefficients: 2 me
U =
8

% (2.20)

ot
* Define x as the mean electron wave vector in the crystal after allowing

for mean crystal potential ¢,
,  2me

B (E0+¢0) (2.21)

K

(c.f. equations 1.17)
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=Pr~L Dynamical theory: Bloch wave approach

e Substitute egs 2.19-2.21 in the Schrédinger equation 2.14:

2{[1{2 ~(k+2) |c, +2Ughch}exp[zm(1;+ g)-r|=0 (2.22)

g h#g

* This equation holds for all points F in crystal. Therefore coefficient of
each exponential term must be equal to zero:

< -(k+g) |+ XU,,C, =0 (2.23)

h#g
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=P~L Bloch wave: 2-beam approximation

« Consider 2-beam case with strong scattering from only one plane
— i.e. diffraction pattern with direct beam and one diffracted beam g

 EqQ. 2.19 terminated after two terms:

w(F)=C, exp(27ti1}-1")+Cg exp[Zm’(E+§)-f] (2.24)
* EQ. 2.23 gives two equations:

(2.25)
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=P~L Bloch wave: 2-beam approximation

* Rewrite these two equations in matrix form:

K> —k’ U_, C,
: ( ):o 2.26)

e Solution if determinant of the coefficients is equal to zero:

K> -k’ U_,
U Kz—(E+g)2

8

=0 (2.27)

[ | Duncan Alexander EPFL-IPHYS-LSME. Electron-matter interactions: Elastic scattering (II) 34



=P~L Bloch wave: 2-beam approximation

 Make high energy approximation:
K-k’ =2k (k- k)

(2.28)
K’ —(E+g)2 = 2K(K—|E+g|)
* Eq. 2.27 becomes: (K—k)(K—|E+§|)=% (2.29)

. 2 values of wave vector k" and k® inside the crystal, one for each Bloch wave
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=PiL Meaning of 2 (or more) Bloch waves

Incident beam partitioned into Bloch waves in crystal. Each Bloch wave propagates
with different wave vector k') so they become out of phase with each other.

Leads to interference: crystal acts as interferometer.

Entrance surface: need to match incident wave with total wave in crystal.
Y and V¥ must be continuous.

Define z as downward normal to crystal surface. Let k) and k") be components
of k) in z direction and plane of surface.

For symmetrical Laue case — g parallel to surface — tangential kfj) components
must be equal and equal to tangential component of k,. Therefore set k') =k,

Also: o) =,V
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=PiL Dispersion surfaces

e Considering a general case, eq. 2.26 becomes:

2 (kDY U (/)
(<) s [Co']:(, (2.30)

e Further high energy approximations yield:
N < (J)
Kz—(k’ Z ~2K’(K'—kzj )—kf (2.31)
K’ —(E(j) + gr) ~ 2](’(7(’— kij))—(kt + g)2

- U cl) | cl)
L L (()'> :(kij) "“) (()-> (2.32)
2K U, —(k, +g) C/’ C’

* Together yielding:
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=PiL Dispersion surfaces

e Dispersion surface:
plot of permitted values of k) against «,

e (Calculated by solving eq. 2.32

« k" values found by plotting normal to
end of incident wave vector k, and

identifying its intersection with the
branches
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=PrL Diffracted beam intensities

« From eqgs 2.17 and 2.1 total wave function is:

¥(F)=Y oy (F)= Yo"y cexp| 27i( KV + g) | (2.33)
J J g

» At bottom of crystal thickness ¢ the Bloch waves decouple into their plane wave
components.
For zero order Laue zone (g, =0) amplitude in diffracted beam direction (E+g) IS:

0,(1)=Y,a"y cVexp(27ik!s) (2.34)
J 4

where oV =V
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=PrL Diffracted beam intensities

* Intensity in diffracted beam is then:

2

I, (1)= ZC(()j)*C;j) exp(27zik§j)t)
j

« Further at exact Bragg k£, =—0.5g:

* Extinction distance: gg —
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(2.35)

(2.36)

(2.37)

(2.38)
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=PrL Diffracted beam intensities

 From eqs 2.35-2.38, at exact Bragg condition:

I(t)= SmZ[”—f] 1,(r)= 1—Ig(t)zcosz[ﬂ—t)

Se
s T S
t
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=PiL Thickness fringes

e Bright-field and dark-field imaging of Si cleaved wedge at 2-beam condition

Diffraction Bright field Dark field
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=PrL Diffracted beam intensities

1
- More generally:  1,(t)=

« Model I, vs s for ¢, = 100 nm

|

t=150 nm

1+&

| / 1+45s?

1

. D 2
-sin” | wt |[—+s

S «fg

-0.10 -0.05 0.00

0.05 0.10

s (nm-1)
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I,(t)=1-1,(t) (2.40)

t=250 nm
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=PrL Diffracted beam intensities

1 . 1
 More generally: Ig(t)zngs2 Sln2£7tt ?+52] I,(t)=1-1/(t) (2.40)
8 8

« Model I, vs s for ¢, = 100 nm

t=150 nm t=220 nm

]. ]-Ir‘

-0.10 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 0.10
s (nm-1) s (nm-1)
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=PrL Diffracted beam intensities

1 . 1
 More generally: Ig(t)zngs2 Sln2£7tt ?+52] I,(t)=1-1/(t) (2.40)
8 8

« Model I, vs s for ¢, = 100 nm

t=150 nm t=200 nm
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